神經網絡的作用是執行對于傳統視覺或模式識別系統來說具有挑戰性的任務。線路板廠了解到,通過使每個神經網絡各自不同,并針對特定任務進行設計,它可以更高效、更精確地執行任務。
所有神經網絡的組織模式都是在多個層面上多次處理數據。因此,神經網絡可以在不同的輸入模式下運行十到二十次,而不是用一組特定的參數只運行一次操作。這個想法是,通過所有這些不同的路徑,選擇的數量就會增加。當到了需要做出決策的時候,它已經從輸入中提取了所有的信息。
在路標識別的示例中,第一層可能正在尋找一個標識的角形狀,然后是顏色等各個步驟執行下去,直到它可以非常確信地說這是一個路標并說明其含義。這樣做的好處在于無需對每一個步驟都進行編程,神經網絡將會自己完成,并且隨著時間的推移而不斷學習。該算法知道它需要識別的內容,并將嘗試不同的方法,直到實現目標,并在過程中不斷學習。一旦神經網絡在經過培訓之后,它便可以在實際應用中發揮作用。這意味著工程師不必花費數小時來微調復雜的算法,他們只需向神經網絡展示它需要發現的內容并讓其自學完成。
這些技術已經在車輛中被廣泛用于目標檢測、分類和分析,而駕駛員監測、訪問控制以及語音和手勢識別也可以利用不同類型的神經網絡。此外,將傳統視覺與神經網絡相結合的人工智能方法,可用于行人路徑分析和環繞視圖等應用場景,它將同時依賴于圖形處理器(GPU)和神經網絡加速器(NNA)。
在從傳感器到電子控制單元(ECU)整個鏈路中也可以使用神經網絡,在預處理、中間處理和后處理中使用的各種技術將人工智能引入了其中。
此外,車聯網(V2X)技術正在開發中,該技術將主要使用自動駕駛汽車作為傳感載體,為各種智慧城市和智慧交通場景提供數據和信息。同樣,這些進展將依賴于采用GPU和NNA的方法實現人工智能,以支持來自越來越大的輸入集的各種分析和計算。
傳感器融合
自動駕駛和高度自動化的車輛將嚴重依賴各種類型的傳感器,包括攝像頭、熱成像、雷達、激光雷達(LiDAR)等。PCB小編獲悉,所有這些傳感器傳出的信號都需要進行解讀和融合,以便全面了解車輛內部和外部發生的情況。
傳感器融合對于自動駕駛至關重要,它將涉及到GPU和神經網絡以及機器學習和人工智能的結合。
車輛內部傳感器融合的一個很好的示例是駕駛員監測。在當今的車輛中,各種各樣的傳感器都能夠檢測到駕駛員是否注意力不集中。神經網絡可以分析拍攝到的駕駛員圖像,以判斷他或她是否在睡覺、處于疲倦狀態、注意力不集中,甚至通過移動設備講話或發信息。這對于早期的自動駕駛車輛來說是至關重要的信息,因為它可能需要駕駛員在某些時候重新控制車輛,因為汽車需要知道駕駛員是否處于合適的狀態才能這樣做。
駕駛員監測是如何工作的?對準駕駛員面部的攝像頭為分析面部元素(尤其是眼睛)的算法提供了輸入。是睜著眼睛還是閉著眼睛?如果是閉著眼睛,閉眼多長時間?眼神是否飄忽不定?駕駛員正在看向哪里?